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ABSTRACT A particle-based hybrid method of elastic network model and smooth-particle hydrodynamics has been employed
to describe the propulsion of bacterial flagella in a viscous hydrodynamic environment. The method explicitly models the two
aspects of bacterial propulsion that involve flagellar flexibility and long-range hydrodynamic interaction of low-Reynolds-number
flow. The model further incorporates the molecular organization of the flagellar filament at a coarse-grained level in terms of the
11 protofilaments. Each of these protofilaments is represented by a collection of material points that represent the flagellin
proteins. A computational model of a single flexible helical segment representing the filament of a bacterial flagellum is
presented. The propulsive dynamics and the flow fields generated by the motion of the model filament are examined. The
nature of flagellar deformation and the influence of hydrodynamics in determining the shape of deformations are examined
based on the helical filament.

INTRODUCTION

Motile bacteria such as Escherichia coli and Salmonella
typhimurium are known to be sensitive to light, temperature,

and chemical variations in their local aqueous environment

(1). The response to chemical stimuli, referred to as chemo-

taxis, is manifested by the bacteria swimming toward che-

moattractants or away from chemorepellents. This is done by

sensing the chemical gradient at a faster rate than the time it

takes for direction changes due to Brownian motion (1). An

external organelle of locomotion known as the flagellum

serves as a rotating propeller to aid in the ‘‘swimming’’

process. The flagellum consists of three parts: a reversible

rotary motor, a hook, and a filament. The motor is a complex

structure composed of proteins (1,2). It is located at the

flagellum’s anchor point that is embedded in the cell wall,

beginning with the cytoplasm and ending at the outer mem-

brane. It is driven by a transmembrane electric potential due to

a proton gradient (for some bacteria that live at high pH,

sodium ions are used instead) across the cell membrane (1,2).

The motor can run in both clockwise and counterclockwise

directions, generating a torque that rotates a helical filament

attached to it via a short proximal hook. The hook functions

as a flexible coupling or universal joint for the filament,

transmitting the torque generated by the motor to the filament

(see Namba and Vonderviszt (3) for reviews).

The flagellar filament serves as a propeller by converting

the rotary motion of the motor into a linear thrust (4,5). The

filament is a self-assembling helical polymer constructed

from a single protein flagellin. It is able to adopt different

polymorphic conformations, including left-handed and right-

handed supercoils (6,7). It has 11 monomers for every two

turns of the one-start helix. Alternatively, the filament is

conceived as 11 strands of protofilaments arranged around a

hollow central channel (3,8,9). These helical filaments are up

to 15 mm long, whereas they are only 120–250 Å in diameter

(3). Typical flagellar filaments of contour length from 10 to

15 mm are estimated to contain from 21,000 to 32,000 fla-

gellin monomers, respectively (10).

A bacterial cell may contain a single flagellum or multiple

flagella attached to it at different sites of the cell body. For

example, E. Coli typically contains up to six flagella per cell

(2). During chemotaxis, the swimming pattern of the bacteria

alternates between ‘‘run’’ and ‘‘tumble’’ modes (11). During

the run mode the motor rotates counterclockwise (as it is

viewed from outside the cell), and left-handed helical fil-

aments bundle together (12), providing a forward thrust to

the cell. Periodically, the bundle falls apart when one or more

of the flagella motors switch their direction of rotation,

causing the cell to move erratically or tumble (13). As a result,

the propulsion of the cell is carried out through a serious of

runs interrupted by tumbles (11). When the tumbling event

occurs, a complex process is initiated, where a chirality re-

versal that eventually transforms a left-handed helix into a

right-handed helix is manifested (14).

The propulsion of a bacterial flagellum involves the

interplay of elasticity and hydrodynamics. The structure of

the flagellum is dominated by strong elastic behavior, i.e., in

terms of bending and other deformation modes. On the other

hand, the surrounding solvent is governed by viscous inter-

actions and the Newtonian constitutive relation. As such,

modeling the composite flagellum/solvent system is a chal-

lenging task, and that is the focus of this article. In the past, a

large number of analytical and numerical calculations have

been carried out to describe the nature of bacterial propulsion

and the flow surrounding it (15–29). For example, many

theoretical studies of the fluid mechanics of helical swim-

mers are aimed at deriving the behavior of helical propulsion

from first principles (15–17). These studies predict the

motion of helical structures and a large body attached to
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them. Lighthill (18) provided a mathematical description of

a helical swimmer using slender-body theory (19). In this

theory, the flagellum is represented as a line distribution of

singularities known as Stokeslets and dipoles. It takes ad-

vantage of the long slender shape of the filament and obtains

an approximate solution for the flow around such bodies.

Higdon (20) combined analytical and numerical approaches

to describe the motion of a helical flagellum with a spher-

ical body. The flagellum was modeled using slender-body

theory. Computationally, Ramia et al. (21) employed the

boundary-element method to study the motion of a helical

flagellum with a spherical body. Kim et al. (22) used slender-

body theory to study the flow surrounding a helical filament.

In all of these works, the helical filaments are considered

as rigid structures that rotate as a whole, or deform in a pre-

sumed wave form at all times. As a result, the elastic nature

of the bacterial flagellum is ignored. Alternatively, in other

studies (23–26), the elastic nature of the filament is captured

through the application of Kirchhoff’s rod theory, whereas

hydrodynamics is only approximated through the use of

resistive-force theory (27). In the resistive-force theory, the

force on a short segment of the filament is calculated by

considering the local drag force normal and tangential to the

line element of the helical filament. In particular, the force

per unit length is approximated by f ¼ z?u? 1 zkuk, where

u? and uk are the normal and tangential components of the

local rod velocity relative to the fluid, and z? and zk are the

transverse and the tangential resistance coefficients, respec-

tively. In this regard, the resistive-force theory is a simple

approach to use. However, it makes no prediction for the

flow induced by the filament.

Furthermore, in most of these treatments the structure

of the propeller appears only as helical lines or tubes (20,

22,24). A model that fully addresses the bacterial flagellum

needs to account for the structural organization of the

filament as well. This description is lacking in many of the

models. An exception to this particular case is the coarse-

grained continuum rod model of a bacterial flagellum that

incorporates the structural organization of the filament in

terms of the protofilaments (29). Another recent develop-

ment in this respect is the work of Cortez et al. (30), based on

the immersed boundary method. This model treats the

flagellum as a helical hollow tube consisting of material

points connected to each other by elastic springs. The mate-

rial points serve as force-generating point sources that are

advanced on the basis of a no-slip boundary condition. The

method incorporates both the elastic and the hydrodynamic

aspects of bacterial propulsion. The choice for the material

points in this model is not typically representative of the 11

strands of the protofilaments. However, it captures the actual

swimming of a bacterial flagellum through the coupling of

flexibility and hydrodynamics.

In this work, the molecular organization of a bacterial

flagellum is constructed in terms of the protofilaments that

constitute the propeller. In particular, the filament is repre-

sented as a hollow helical tube of 11 strands of protofila-

ments. Each of these protofilaments is composed of material

points that are regarded as particles representing flagellin

proteins at a coarse-grained level. Then a model of a bacterial

flagellum in a fluid is developed through the use of a hybrid

method of the elastic network model (ENM) and the smooth-

particle hydrodynamics (SPH). Many authors have utilized

the ENM method to describe the global motion of large

macromolecules such as proteins (31). In these models the

nodes of the network represent the amino acid residues and

the linkers are springs that represent the interresidue poten-

tial stabilizing the folded conformations. At a macroscopic

level, on the other hand, such a network has also been used in

the immersed boundary method (30,32). Similarly, in the

present model, each material point on the model filament is

treated as a node and any neighboring points on the surface

of the helical tube are connected by a network of springs with

a stiffness constant S. The stiffness constant of the model is

matched to the material property of the real flagellum by

connecting the local property of the network with the overall

elastic property of the flagellum. The overall elastic property

can be found from experimental measurements of either the

flexural rigidity A or the twist modulus C of the flagellum.

The flow around the model filament and the coupling

between the surrounding fluid and the filament are studied

through the use of SPH. This method is a fully Lagrangian

method in which numerical solution is achieved without the

use of a grid. The gridless nature of SPH provides an ad-

vantage over the traditional fluid dynamical methods that use

finite-element or finite-difference methods in dealing with

complex geometries or highly deformable boundaries. The

SPH method was originally developed for astrophysical

problems (33,34) and later applied to incompressible fluids

through the use of equation of states that yield low Mach

number M (35).

The goal of this work is thus twofold: 1), to capture the

physics of bacterial propulsion by developing a simplified

model that accounts for both the elastic and the hydrody-

namic aspects of the flagellum, as well as the structural

organization of the filament; and 2), to investigate the flow

field and the deformation behavior arising from the interac-

tion of elasticity and hydrodynamics. The flow field gen-

erated by rotating helices has recently been studied using an

experimental technique of particle image velocimetry (PIV)

(36). Theoretically, there are few studies, and a rigorous de-

scription of the flow field is lacking. The explicit hydrody-

namic methodology employed in the model described here

sheds light on the nature of flow surrounding the filament.

The flow field is investigated under conditions where the

model filament is propagating as in a real flagellum.

The article is organized as follows: the simulation is

briefly described in the Methods section, where a description

of the model filament, as well as of the hybrid ENM and SPH

methods, is provided. Further details about the model can be

found in Supplemental Material. In the Results section, the
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propulsive dynamics of bacterial flagellum as captured by the

hybrid model is first presented. Then, the effect of flagellar

rotation on the surrounding fluid is studied by examining the

flow field generated by a swimming helical filament. The

reverse effect, i.e., the effect of hydrodynamics on the de-

formation behavior of the flagellum, is also examined. In this

way, the self-consistent dynamics of bacterial flagellum in a

hydrodynamic environment is described. A conclusion is

given in the last section.

METHODS

Model

The bacterial flagellum is a hollow tube of helical filament that consists of 11

protofilaments. Each of these protofilaments is an assembly of flagellin pro-

teins. The filament is modeled at a coarse-grained level by setting up a

tubular structure of helical geometry that consists of material points repre-

senting the flagellin proteins. The length scale s of a particle corresponding

to each material point is determined by noting that there are 11 flagellin

molecules around the tube of the filament, each of which belongs to one of

the 11 strands of protofilament. Each particle is represented by a sphere of

diameter s ¼ pD/11, where D is the diameter of the filament. For real

flagella, D is typically in the range 12–25 nm. Using D ¼ 24 nm, s is

estimated to be s ¼ 6.85 nm. The mass mo of the particles is estimated from

the molecular weight of flagellin. This value ranges between 45 and 53 kDa

(37). By choosing a molecular mass of 50 kDa, mo is estimated as mo¼ 8.31

3 10�20 g. The timescale t is selected based on the smallest time needed for

stable simulation of the composite filament/solvent system. Accordingly, for

the range of speed of sound and viscosity used in our simulation, a stable

simulation under hydrodynamic environment is found for a time step Dt ¼
0.001 t, where t ¼ 10�9 s. In the article, all values are quoted in reduced

units, i.e., length in units of s, mass in units of mo, and time in units of t.

The model described here consists of 40 particles on each protofilament.

The total number of particles that make up the model filament is thus 440.

This number is chosen to allow a computationally manageable number of

fluid particles that cover the filament. With this number of particles, the

aspect ratio L/a, where a is the radius of the filament, is smaller than that of

the full-scale bacterial flagellum. This model may thus be conceived as a

model of short flagellum. The filament prepared in this way is surrounded by

64,000 SPH particles that are placed on a regular cube of volume. For

simplicity, the mass and size of the SPH particles have been chosen to be the

same as the flagellum particles. The density of the filament is estimated as

r � 1.14, whereas the fluid density is r � 1.006.

The geometry of the model filament is constructed by aligning a heli-

cal tube along the z axis. The position r(i) of any material point i is deter-

mined by

rðiÞ ¼ Rcos
2pzðiÞ

P

� �
1 acosðuðiÞÞ;

�

Rsin
2pzðiÞ

P

� �
1 asinðuðiÞÞ; zðiÞ

�
; (1)

where R and P are the radius of curvature and the pitch of the flagellar helix,

respectively. a is the radius of the filament and 0 # z(i) # L, where L¼ 40.0

s is chosen as the axis length of the filament. u(i) is an equally spaced angle

used to assign positions for the 11 material points around the surface of the

tube. R and P are set as R ¼ 1.0 s and P ¼ L/4, yielding a ratio R/P ¼ 0.1.

For a real flagellum, which can be found typically in any of the normal,

semicoiled, or curly-1 polymorphic forms (1,38), R/P � 0.087 for the

normal E. Coli, where R � 0.19 mm and P ¼ 2.28 mm are estimated for this

form (38). The ratio R/P determines the pitch angle f by the relation f ¼
tan�1(2pR/P). f � 28.7 for the normal state, whereas f � 43.3 and 55 for

the curly-1 and semicoiled polymorphic forms, respectively (see Table 1 of

Kim et al. (39) for the values of R and P). For the model described here, f¼
32.1. The model is thus close to the normal polymorphic state.

It should be emphasized here that the length scale of the present model

is much smaller than that of the real flagellum. This choice is made to allow

for computational efficiency. To accommodate for a helical shape within

the length scale of the model, the individual dimensions corresponding to

the radius of curvature or the pitch of the helix are assigned values that dif-

fer from those of the real flagellum. However, as described above, the com-

bination of these parameters yields a helical structure that is similar to the

normal polymorphic state of flagellum, with the pitch angle serving as a

reference quantity. More important, the elastic material behavior of the

model flagellum is arranged such that the overall elastic property of the real

flagellum measured in terms of flexural rigidity is attained. Therefore, the

flagellum in our model may be perceived as a helical filament with material

points organized to satisfy the overall elastic property of the real flagellum.

Simulation

Elastic network model

The filament is modeled based on the elastic network model. Each material

point is treated as a node, and neighboring particles within a cutoff radius rc

are connected by a network of springs. A single stiffness parameter is used

for all particles. The use of a single stiffness parameter is justified, since the

filament is comprised of identical protein molecules. The total potential

energy E of all the particles in the filament is

E ¼ +
N�1

i¼1

+
N

j.i

Eij ¼
1

2
+
N

i¼1

+
N

j6¼i

Eij; (2)

where Eij is the potential energy between any pair i and j. It is expressed in

terms of a simple pairwise Hooke’s law potential with a single value of S for

all links,

Eij ¼
1

2
SQijðrij � rijoÞ2; rij ¼ jr~i � r~jj; rijo ¼ jr~io � r~joj

Qij ¼
1; rijo # rc

0; rijo . rc

: (3)

�

Here Qij is a step function that vanishes for rijo . rc. For our system, rc is

chosen to be 2.0 s. The stiffness constant, S, is parameterized based on the

material property of the real flagellum, from which S¼ 10.17 3 103 dyn/cm

is found (cf. Supplementary Material A). The force on i due to j is thus

calculated as

Fij ¼ �
@Eij

@r~i

¼ �r~ij

rij

@Eij

@rij

¼ �SQijðrij � rijoÞ
r~ij

rij

: (4)

Smooth-particle hydrodynamics

The hydrodynamics component of the simulation is modeled using the SPH

method. The SPH equation of motion for particle i corresponding to the

Navier-Stokes momentum equation is expressed as (35)

dvi

dt
¼ �+

j

mj

pi

r
2

i

1
pj

r
2

j

1 Pij

" #
~==iWðjri � rjjÞ; (5)

where pi and pj are the pressures at particles positions ri and rj, respectively.

Similarly, ri and rj are the mass densities of particles at positions ri and rj,

respectively. W is the smooth-function kernel. For our model, W is expressed

using the Lucy weight function (see Eq. B4, Supplementary Material B) with

a cutoff distance h ¼ 3 s. The term Pij is an artificial viscosity first
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introduced to permit the modeling of shocks (40). In general, this term

produces a shear and bulk viscosity. It is expressed as

Pij ¼
�acmij 1 bm

2

ij

�rrij

; if vij � rij , 0

0; otherwise

8><
>:

mij ¼
hvij � rij

r2

ij 1 0:001h
2; �rrij ¼

ri 1 rj

2
: (6)

Here, a is the nondimensional viscosity parameter, vij¼ vi� vj, and rij¼
ri - rj. For low Mach number flow, b is often set to zero (35). The mass

density ri of a particle at position ri can be evaluated using the relation given

by Eq. B2 (Supplementary Material B). Here, an expression derived from the

continuity equation (35) is utilized, i.e.,

dri

dt
¼ +

j

mjðvi � vjÞ �~==iWðjri � rjjÞ: (7)

This equation has the advantage of reducing the computational cost by

allowing r to evolve concurrently with the particle velocities. Furthermore,

the presence of spurious pressure gradients induced at a free surface can be

avoided by using this expression (35).

The equation of state used in the present model is based on the relation

that was originally proposed by Batchelor (41) and later applied to the tradi-

tional SPH model (35),

pi ¼ B
ri

ro

� �g

�1

� �
; B ¼ roc

2

g
; (8)

where ro is the initial density of the SPH particles. B and g are constants,

where g ¼ 7 is used as in Monaghan (35). This choice causes the pressure to

respond strongly to variations in density. B is chosen in such a way that the

speed of sound is sufficiently large to ensure M # 0.1 (cf. Supplementary

Material B).

The swimming of a bacterial flagellum is within the regime of low

Reynolds number, Re. The typical value of Re for bacterium in water is Re�
10�4 or less, but there are also estimated values as high as Re � 0.05–0.25

for the complex flagellar filament of Rhizobium lupini (see discussions in

Trachtenberg et al. (42)). In the simulation described here, the Reynolds

number is set such that Re lies within these ranges, where Re is estimated

from the relation Re� rvl/ach. Here, l is the characteristic length over which

the flow varies, and v is the characteristic velocity of the flow (cf.

Supplemental Material B). For the flow induced by the flagellar rotation, v is

estimated based on the relation v ¼ vl, where l ¼ a, the radius of the

filament. The interaction between the SPH fluid and the model filament is set

up through a boundary condition that imposes a no-slip condition for the

layer of fluid near the filament. This condition is approximated by applying a

viscous interaction between the fluid and the filament (43). Additionally, a

pressure force arising from the density gradient near the boundary is exerted

on the filament. More details about the development of the SPH method

specific to this system can be found in Supplemental Material.

RESULTS AND DISCUSSION

Propulsive dynamics

Bacterial dynamics is in the realm of low-Reynolds-number

hydrodynamics. The remarkable aspect of motion at very

low Reynolds number is that a reciprocal, or time-reversion

invariant, motion generates no propulsion. According to the

‘‘scallop theorem’’, as Purcell nominally termed it, an

organism that has only one degree of freedom, as in the

motion of a scallop, or a rigid one-armed swimmer, cannot

swim at low Re (44). This is a consequence of the time re-

versibility of Stokes flow, in which the pattern of displace-

ment is the same whether the organism moves fast or slowly

during the power or recovery stroke. Motile microorganisms

overcome this difficulty by breaking the time-reversal sym-

metry either through flexibility or cyclic motion. For ex-

ample, eukaryotic flagella break this symmetry through

oscillatory bending (45,46). Bacteria cells break the time-

reversal symmetry through a cyclic motion of their flagella.

This motion is generated by a continuous twist exerted at the

base of the filament by the rotary motor. The twist force at

the base is then transmitted to the rest of the filament through

the elastic interaction. As the flagellum rotates, each piece of

the filament experiences a viscous drag that sums up to yield

a net thrust force that propels the cell. In this section, it will

be shown how the hybrid model captures these essential

physics of flagellar propulsion.

The propulsion of bacterial flagellum is studied through

the model filament by applying a rotational torque at the base

of the filament that spins the filament at a particular rotational

speed v. This torque imitates the effect of motor rotation on

the real flagellum. A typical rotational speed during bacterial

chemotaxis is v¼ 100 Hz (38,47), but there is evidence that as

high as 1700 Hz is possible (48). Since our model incorporates

the molecular motif of the flagellum at the level of flagellin, to

observe any considerable propulsion, such rotational speeds

demand significantly large CPU time. To speed up the sim-

ulation, higher rotational speeds are used. Nevertheless, the

Reynolds number is adjusted to approximate the range found

in real systems by selecting a proper speed of sound that

compensates for the large v. The approach in setting Re as a

target is conceptually similar to experiments done to study

flagellar bundling using a macroscale model of bacterial

flagella. In these experiments, the motors are typically rotated

at a low speed of 0.1 Hz (39) and 0.25 Hz (36). However, the

other parameters in the experiments are adjusted to yield a low

Reynolds number with Re � 10�3 (39).

Different rotational frequencies f¼ 0.0034 t�1, 0.017 t�1,

0.034 t�1, 0.068 t�1, and 0.17 t�1 are used to investigate

the propulsion behavior. The lowest of these values is three

orders of magnitude higher than the largest motor rotation

experimentally predicted. However, for each frequency, the

speed of sound, c, that yields a low Mach number of M¼ 0.1

results in Re � 0.006 for a ¼ 10. These sets of parameters

are used in the subsequent analysis. To specifically observe

the propulsion, f ¼ 0.17 t�1 is used. The other frequencies

also give the same behavior, but takes longer time to cover

the same displacement.

When the filament is rotated counterclockwise at a

particular frequency v, the interaction between the filament

and the fluid produces a thrust force that propels the fla-

gellum along its axis, in a direction parallel to the direction of

v. The filament moves in the opposite direction when the
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rotation is reversed. Fig. 1 shows a sequence of snapshots

depicting the propulsion of model flagellum for the motor

rotational frequency f ¼ 0.17 t�1. The first frame shows the

helical structure near the beginning of the simulation. To

surround the model filament by fluid at all times, a periodic

boundary condition has been applied along the long helical

axis. The part of the filament that appears to be outside the

fluid region is actually surrounded by the fluid. This figure

confirms the physics behind bacterial propulsion in which

a helix caused to rotate in a very low Reynolds number will

necessarily translate (44). A straight cylindrical tube (not

shown) with the same physical conditions (e.g., viscosity of

the surrounding fluid, stiffness constant, etc.) as in the helical

filament except its shape yields no propulsion, as expected.

(An animation movie that shows the propulsion of the model

filament at a rotational frequency of f ¼ 0.17 t�1 has been

included in Supplementary Material.)

The total hydrodynamic force F on a flagellum can in

general be obtained by integrating the force, f, per unit length

or unit area, depending on the representation of the flagellum as

either a line filament or a tube, respectively. Assuming ds to

represent an element of length or area, in general, F can be

written as F ¼
R

S
fds. The model described here represents the

flagellum as a hollow tube. Thus, ds corresponds to an element

of area. For a discrete representation, F can be obtained by

summing the forces over the material points of the model.

According to the SPH equation of motion in Eq. 5, the hy-

drodynamic force on each material point is the sum of the

pressure force and the viscous forces arising from the in-

teraction between the filament particles and the smooth fluid

particles. The component of these forces along the helical axis

adds up to provide a net thrust force that propels the model

filament. The other components are expected to cancel each

other because of symmetry. In Fig. 2, we show the x, y, z
components of the hydrodynamic force for a frequency f ¼
0.017 t�1. The axis of the helix is chosen as the z axis, and the

directions perpendicular to the z axis are assigned arbitrarily as

the x and y axes. In the plots, the magnitudes of the instan-

taneous forces are shown together with the time-averaged

values. The average forces in the directions perpendicular to

the helix axis are found to be nearly zero, as expected, whereas

a significant amount of force is observed along the long helical

axis. This force corresponds to the thrust force. The evaluation

of the average hydrodynamic force for different motor

rotations (cf. Fig. 2 d) reveals that the magnitude of the thrust

force increases with increasing v, whereas the magnitude of

the other force components are still small.

Flow fields

One of the main advantages of this model, compared to, e.g.,

those using resistive force theory, is that the hydrodynamics is

treated explicitly. This allows a more detailed examination of

the behavior of flow fields around the flagellum. The recent

PIV experiment on a macroscale model of bacterial flagella

reveals the velocity distribution around rotating rigid helices

and flexible helices (36). For lack of similar numerical sim-

ulations done on flexible helices, the velocity fields from both

the rigid and flexible helices are compared to a rigid helix

based on the slender-body theory. The analysis in this section

provides information on the nature of flow fields based on

flexible helices, where a study is done on the flow fields

generated by swimming filament. Note that the above studies

are made using helices that are restrained from translating in

contrast to a swimming filament of this model.

The flow around the model filament is studied by

considering fluid particles over a plane bisecting the helical

axis. First, the instantaneous velocities and pressures at each

particle position rj are calculated. Then, the corresponding

field variables at any space point r are measured by aver-

aging the instantaneous values of all particles within a cutoff

radius h of the space point. The averaging is done according

to the SPH method, in which the contribution from each

particle is weighted by the value of the kernel function at the

particle’s position. In solving the hydrodynamics, the bound-

ary conditions need to be specified. Ideally, one wishes to

surround the filament by an amount of fluid that is large

enough to be regarded as an infinite fluid. However, this is

limited by computational efficiency. In the model we describe,

all external boundaries are fixed except the boundaries

bisecting the filament axis. Periodic boundary conditions

are applied along the filament axis. This allows the model

filament to be surrounded by fluid at all times during pro-

pulsion, as mentioned above. The choice for a fixed external

boundary on the remaining sides permits a comparison of the

flow with known flows from fluid mechanics. Moreover,

with this choice, our model attains qualitative similarity to

FIGURE 1 Snapshots showing the propulsion of helical filament in a fluid

for a rotational frequency of f¼ 0.17 t�1 at times t (a) 0.1 t, (b) 5 t, (c) 10 t,

and (d) 15 t. Note that these times correspond to 100, 5000, 10,000, and

15,000 iterations. Periodic boundary condition applies along the long axis of

the filament. The arrow shows the direction of the positive z axis.
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the PIV experiment that is carried out inside a rectangular

tank. It should be noted that other boundary conditions have

also been tested, e.g., free surface sides. As expected, the

flow pattern for the free surface is different from the fixed

boundary. In the case of the free surface, the whole fluid

rotates as a rigid body when the flow is fully developed. In

the following, all analyses are based on the fixed boundary.

Velocity field

The velocity field at any point r is evaluated by SPH aver-

aging of the velocities vj at positions rj that are within a cutoff

radius of the point r, i.e.,

vðrÞ ¼ +
N

j¼1

mj

rj

vjWðjr� rjjÞ: (9)

The evaluation of the velocity field in this model is simple

and straightforward, as compared to, say, the slender-body

theory. In this method, this calculation amounts to summing

individual particle velocity vj, weighted by the weighting

function W, where the particle velocities are simply a result

of integration of the SPH equation of motion. In contrast, the

velocity field in the slender-body theory is found based on

a linear superposition of the Stokeslets (point forces) and

doublets (source dipoles) distributed along the centerline of

the flagellum (49). This involves the calculation of the

Stokeslet and doublet tensors, as well as the strength of the

point forces and source dipoles (19,49).

In Fig. 3, the calculation of the velocity vectors is shown for

a fluid element over a cross section halfway between�L/2 and

L/2 in the z-direction, where L is the length of the simulation

box. The analysis is done for flows generated by rotations of

the model filament at motor speeds v ¼ 2p 3 0.0068

t�1 and 2p 3 0.17 t�1. The values of the speed of sound

corresponding to these frequencies are chosen such that M ¼
0.1. The viscosity parameter is set to a¼ 10 for both rotations.

The Reynolds number for these selections is Re� 0.006. The

velocity vectors are shown for the times t¼ 3t and t¼ 5t for

the rotational speeds v ¼ 2p 3 0.17 t�1 and v ¼ 2p 3

0.0068 t�1, respectively. These times correspond to the times

when the flows are fully developed. In each of the figures, it is

observed that a smooth flow of the fluid accompanies the

rotation of the filament. This is expected for low-Re flows

that are known to show a laminar behavior (50). Notice that

the velocity vectors are smoother for the lower speed. As

expected, the laminar behavior becomes more evident for low

speeds in the zero-Re limit. For other planes, patterns similar

to those shown in Fig. 3 are observed. It is found that, unlike

steady flows, the velocity vector deviates from a smooth flow

pattern after long times; the point in time where this occurs

depends on the frequency of motor rotation. The instability

could be either due to the flexibility or the forward propulsion

of the helical filament, or both. The flexibility may simply

cause local disturbances that eventually propagate to other

regions. The swimming of the model filament, on the other

hand, may induce a shear stress that drags the fluid element in

a direction parallel to the motion of the filament.

The magnitude of the instantaneous velocity field can be

shown using 2D and 3D contour plots. Fig. 4 shows the

contour plots of the velocity field for the rotation induced

by a motor speed of v ¼ 2p 3 0.17 t�1. The 2D contour

plot reveals the rotationally symmetric nature of the flow

(except near the boundary). The 3D contour plot clearly

FIGURE 2 Components of the total hydrodynamic

force (a) along the filament axis (thrust force)(b) along

an axis perpendicular to the helix axis, the x axis, and

(c) along the y axis. The horizontal dashed line is a line

marking the time average of each component. This is

compared to a horizontal solid line marking the zero

position. These lines are indistinguishable from each

other for Fx and Fy. The forces are calculated for motor

rotational frequency f ¼ 0.017 t�1. (d) The magnitude

of the time average hydrodynamic force components at

different frequencies. The unit for the forces is given in

reduced units.
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demonstrates the decrease in the magnitude of the field for

distances further away from the filament. These observations

are typical of low-Re flow. To make a quantitative comparison

between the flow induced by the model filament with a flow

known from theoretical calculations, the average azimuthal

velocity vu(r) is evaluated for the flow generated by the helix.

The flow due to the model filament is an example of a flow with

a moving surface. Noting the circular symmetry of the flow

(neglecting the effect of boundary), the flow generated by the

filament is similar to the Couette flow in the annular gap

between two concentric cylinders of radii R and eR, one of

them rotating at a rotational frequency v. For a steady flow, the

velocity field of the Couette flow in cylindrical coordinates has

the form vu¼ vu(r) and vr¼ vz¼ 0, where vu, vr, and vz are the

azimuthal, r and z, components of the velocity, respectively.

The analytical solution for vu(r) at any distance r from the

center of the inner cylinder is given by (51)

vuðrÞ ¼
vR

e2 � 1

e2

r=R
� r=R

� �
: (10)

To compare the theoretical value of vu with the results, the

theoretical value from the above equation is fitted to the data.

For this system, vu(r) is determined by radially averaging the

velocity field evaluated by Eq. 9 over circles of constant

radius r around the filament. The calculations are done for

flow fields generated by different rotational frequencies v at

the times when the flows are fully developed for each rotation.

Although the two systems are different in many respects,

good qualitative agreement between the theory and the sim-

ulation is observed for the regions away from the filament. This

qualitative similarity becomes more apparent when the theo-

retical value is plotted with the data, as shown in Fig. 5, where,

for comparisons, the theoretical values are scaled down by a

constant value of g � 0.35. Near the filament, a deviation is

found from the qualitative behavior of the theoretical value.

The origin of this deviation may appear to arise from the

flexibility of the model filament studied. However, qualita-

tively similar behavior has been observed from the PIV

experiment for both flexible and rigid rods (36). In the PIV

experiment, the flow field shows a sharp bend in the vicinity of

the helix ring. A numerical simulation done on a rigid helix

based on the slender-body theory showed the same behavior.

FIGURE 3 Velocity field plotted as vector (a) for motor rotational

frequency, f¼ 0.17 t�1 and speed of sound c¼ 20 at time t¼ 3 t and (b) f¼
0.0068 t�1, c ¼ 20, at t ¼ 5 t. FIGURE 4 (a) Two-dimensional and (b) 3D contour plots of the

instantaneous velocity field for a motor rotational frequency f ¼ 0.17

t�1 at a time t¼ 3 t, when the flow is fully developed. The flow field is over

a plane halfway between�L/2 and L/2, where L is the size of the simulation

box. The plots show the symmetry and magnitude of the velocity field.
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To understand the origin of this deviation for the present

system, the azimuthal velocity is recalculated using the

individual particle velocities, instead of the flow field derived

from the SPH averaging (Eq. 9). The sharp decrease of vu(r)

in the present system, as compared to the theoretical value,

may arise from the velocity interpolation of Eq. 9. A better

agreement between the theory and the simulation is found

when vu(r) is fitted using the individual particle velocity (cf.

Fig. 6). This leads us to conclude that, despite its flexibility,

the flow due to the model filament appears momentarily as

the Couette flow under a fixed external boundary.

Pressure field

The pressure field can be calculated in a manner similar to

that for the velocity field. At each particle position ri, the

pressure pi is evaluated using Eq. 8, based on the variations

in density of the smooth particles. The pressure field p(r) at

any point r in space is calculated by SPH averaging of the

pressures pi as

pðrÞ ¼ +
N

j¼1

mi

ri

piWðjr� rijÞ: (11)

In Fig. 7 a, we show a 3D contour plot of the instantaneous

pressure field for the flow shown by the velocity field in Fig. 4.

It is interesting to note that the contour plot of the pressure field

looks like a flipped velocity field. That means the pressure field

is maximum where the velocity field is minimum. Note that this

is different from the pressure field of a Stokes flow in an infinite

fluid. In the Stokes steady flow, the pressure field of a singular

point force concentrated at r ¼ 0 has a radial component that

decays like 1/r2, yielding a vanishing pressure at infinity. Since

FIGURE 5 Radially averaged azimuthal velocity vu(r)

of the velocity flow field for different rotational frequencies

during the times when the flows are fully developed for

each frequency. The solid lines are theoretically fit to each

data using Eq. 10. The theoretical fit is further scaled down

by g � 0.35.

FIGURE 6 Radially averaged azimuthal velocity vu(r)

based on individual particles velocities for different fre-

quencies. The solid lines are theoretically fit to each data

using Eq. 10. The theoretical fit is further scaled down by

g � 0.35.
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the Stokes equation is linear, the superposition of such singular

points will also behave similarly. This difference is a result of

the boundary condition used.

As in the case of the velocity field, the behavior of the

pressure field depends on the boundary condition set to the

fluid. For the fixed external boundary, following an argu-

ment similar to that leading to Eq. 10, an expression for the

pressure gradient along r can be found as

@p

@r
¼ r

v
2

u

r
: (12)

This is nothing but the centrifugal force acting on a fluid

element of mass density r. The pressure gradient provides the

force needed to maintain the flow. Consequently, the velocity

is large in a region where @p/@r is large, and small otherwise.

Theoretically speaking, if the above equation is integrated

using the expression for the azimuthal velocity (Eq. 10), it can

be observed that p(r) is maximum at the external boundary.

Fig. 7 b confirms this argument. In the figure, we plot the

radially averaged pressure field obtained from the data of Fig.

7 a. The figure also shows the gradient of the average pressure

field. It is evident from the figure that the speed of the flow is

large where the pressure gradient is large.

Another interesting feature of the pressure field is the

early-stage development of the field, i.e., during the time

before the flow is fully developed. Fig. 8 shows a surface plot

of the pressure field evaluated at different times, for the fluid

element studied in Fig.7. The figure depicts the time evo-

lution of the pressure field as the flow stabilizes. When the

model filament begins to rotate, the helix induces a pressure

gradient caused by an increase in the density of the closest

layer. This creates a pressure build-up around the filament.

With time, the nearest layer influences its surrounding due to

the pressure gradient. This effect spreads out to other layers,

causing the pressure to affect regions further from the fila-

ment until the whole system stabilizes, in a manner similar to

a wave propagating in a medium. It should be noted that in a

real bacterial motion one observes a series of stops and runs,

where the cell stops momentarily during the tumbling pro-

cess. Thus, the early-stage development seen here is not an

isolated event that only happens at the beginning of the entire

chemotaxis. It is rather part of the bacterial propulsion

process, although in a more complex manner in the real

system.

Deformation: rotational instability

During the tumbling process, when one or more rotary

motors reverse their directions, the flagella undergo defor-

mations that involve a complex sequence of shape transfor-

mations. When such polymorphic transitions occur, a range

of motor speeds is observed that may differ from the speeds

when the cell runs smoothly. Numerical studies have been

performed on elastic filaments to study the nature of deforma-

tions arising from varying rotational speeds (32,52). These

studies reveal two dynamical regimes of motion depending

on the rotation rate. They find that when an elastic rod is

rotated at a particular rotational speed v, the shape of the

rod becomes unstable depending on the speed of the rotation.

At low rotational speeds, the rod spins about its long axis,

with the centerline remaining straight. This is referred to as

twirling. When the speed is high, the rod rotates in a form

where the centerline is bent, referred to as whirling (52) or

overwhirling (32). These studies are done on straight rods in

a viscous hydrodynamic environment. More complex phe-

nomena are expected with a rotating helical filament. In

this section, the dynamical instability for the model helical

filament is examined. The focus is on the influence of hy-

drodynamics on the deformation behavior of model flagella.

To clearly identify the effect of viscous interactions, the

nature of deformation of the model filament is compared

with and without hydrodynamics. The model discussed here

is capable of this extension, in contrast to, for example, the

FIGURE 7 (a) A 3D contour plot of the pressure field for a fully

developed flow at time t ¼ 3t at a motor rotational frequency f ¼ 0.17 t�1.

The small bend of the contour plot near the surface is an artifact of the

boundary that has different local environment than the bulk. (b) Radially

averaged pressure field for the flow shown in panel a. The pressure gradient

is evaluated using a centered finite difference of the averaged pressure field

data.
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immersed-boundary method (32). The immersed-boundary

method is inherently designed to incorporate nonlocal hy-

drodynamic effects. On the other hand, in Wolgemuth (52),

hydrodynamics is treated at the local level in terms of drag

forces.

Consider an isolated helical filament (without hydrody-

namics) that is rotated at one end with the other end free, under

a boundary condition where the rotated end is pinned or

restrained from translating. As the base of the filament is

caused to rotate at a particular frequency v, the entire structure

responds to the torque in accordance with the stiffness

constant and the speed of motor rotation. As in other studies, a

twirling to whirling transformation is observed with increas-

ing v. In Fig. 9, the time sequence of the helix rotation is

shown for the rotational frequencies f¼ 0.017 t�1, 0.17 t�1,

and 0.85 t�1. At f¼ 0.017 t�1, the centerline of the filament

remains straight at all times, indicating that twirling is stable.

For f ¼ 0.17 t�1 and 0.85 t�1, twirling is unstable and the

centerline of the filament bends upon rotation, with the

deflection being large for the higher frequency. This obser-

vation is similar to the whirling of shafts described in Love

(53). Furthermore, the shape of the instability resembles those

described as crankshaft and speedometer motion in the

analytical study of bistable helices (25).

The effect of hydrodynamics may be understood by

repeating the above calculation for a filament surrounded by

a fluid with a viscosity parameter a¼ 10 and speed of sound

adjusted to yield a low Mach number M ¼ 0.1. As in the

isolated helical filament, no deflection is observed for f ¼
0.017 t�1. However, it is also observed that no deflection

occurs for f ¼ 0.17 t�1. This is in contrast to the case of an

isolated model filament, where a small deflection is found for

this speed of rotation. The lack of instability for f ¼ 0.17

t�1 indicates that hydrodynamics plays a role in suppressing

small deflections. For sufficiently high rotational speed, such

instabilities become inevitable. In this case, the nature of the

deformations depends on another factor as well, i.e., the

deflection depends not only on the rotational speed but also

on the viscosity of the fluid. It should be recalled that the

SPH model does not provide a direct measure of viscosity

since it is designed based on an artificial viscosity. However,

from the expression for Re that can be derived on the basis of

scaling analysis, it becomes clear that h can be related to a

and c by h¼ rach. For a given speed of sound, the viscosity

parameter a can be varied to study qualitatively the effect of

viscosity.

Fig. 10 shows the deflections at high rotational speed of f¼
0.85 t�1 for the values of a ranging from 0.01 to 10. For this

calculation, the criterion for M is relaxed slightly to achieve

stable simulation. For the motor rotational frequency of f ¼
0.85 t�1, the speed of sound is chosen as c ¼ 55 (in reduced

units) such that M changes from M ¼ 0.1 to M ¼ 0.17. This

change results in a ,3% density variation. The overall

qualitative behavior shown in the plot reveals the progressive

FIGURE 8 Time development of pressure field over a cross-section that bisects the simulation box halfway between �L/2 and L/2, for motor rotational

frequency f ¼ 0.17 t�1 at times (a) t ¼ 0.2 t, (b) t ¼ 0.3 t, (c) t ¼ 0.5 t, and (d) t ¼ 1 t.
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change of the deformation behavior with increasing viscosity.

For a ¼ 0.01, a deflection similar to the isolated helical

filament is observed, where the centerline of the filament

bends while rotating. This indicates that twirling is unstable

for this viscosity. With increasing a, the deflection decreases

progressively, eventually vanishing at a ¼ 1. For high

viscosity, a¼ 10, the deflection is replaced by a deformation

that winds part of the filament around itself. This deformation

shows the effect of rotary stress in changing the helical pitch

or radius of the filament. Intuitively, this is what is expected

from an elastic object twisted in a highly viscous medium.

On the other hand, the observation hints at the effect of me-

chanical stress in leading to polymorphism. Note that a poly-

morphic transition in a real flagellum is a complex process that

involves chirality reversal, where a sequence of transforma-

tions from normal to supercoiled to curly-1 and then to normal

is typically seen during a single run-and-tumble cycle (38).

This model captures only the factor that may trigger this com-

plex process. Future improvements are needed to capture the

entire polymorphism through a model that fully incorporates

both hydrodynamics and elasticity.

CONCLUSIONS

A simple hybrid model based on the elastic network model and

the smooth-particle hydrodynamics methods has been devel-

oped to study the propulsive dynamics of bacterial flagella in

a viscous hydrodynamic environment. The propulsion of the

bacterial flagellum involves the interplay of elasticity and

hydrodynamics. The model incorporates these two aspects by

explicitly modeling the elastic nature of the filament and the

hydrodynamics of the surrounding fluid. The model further

incorporates the structural organization of the flagellum at a

coarse-grained level in terms of the 11 protofilaments based on

the physical properties of flagellin, the protein building block of

flagellum. The overall elastic material property of the real

flagellum is matched to the stiffness constant of the model

filament by parameterizing the model using the flexural rigidity

of flagellum found from experiments. The elastic helical fil-

ament representing flagellum is coupled to the hydrodynamics

through a boundary condition that enforces a no-slip boundary

condition. The effect of the surrounding fluid on the model

filament is manifested through the viscous and pressure forces.

In the future, an explicit multiscale connection of this model to

atomistic or coarse-grained molecular dynamics simulations

may be possible.

The physics of bacterial propulsion has been captured by

this simple model through the coupling of the helical filament

and the surrounding fluid. The model also allows for a rig-

orous account of flows surrounding the filament. To study the

hydrodynamic properties, a fixed boundary condition is set to

those sides parallel to the long helical axis. The instantaneous

velocity field resulting from the rotational motion of the

FIGURE 9 Twirling and whirling motion of an isolated helical filament

pinned at the base and rotated at frequencies (a) f ¼ 0.017 t�1, (b) f ¼ 0.17

t�1, and (c) f ¼ 0.85 t�1. The different colors represent the same filament at

different times. For a, the times are t¼ 1 t (red), t¼ 50 t (cyan), and t¼ 92

t (blue). For b, the times are t¼ 1 t (red), t¼ 6 t (cyan), and t¼ 10 t (blue).

For c, the times are t ¼ 1 t (red), t ¼ 2.5 t (cyan), and t ¼ 5 t (blue).

FIGURE 10 Deformation of model filament in a hydrodynamic environ-

ment at high rotational frequency f ¼ 0.85 t�1 for the different viscosities

obtained by using the viscosity parameters (a) a¼ 0.01, (b) a¼ 0.1, (c) a¼
1, and (d) a ¼ 10. The black and gray colors in plots a–c represent the same

filament at times t ¼ 0 (gray) and t ¼ 2 t (black). These are shown to

demonstrate the extent of deformation. Note that the structural organization

of the model filament shown in d is not different from the others. The

drawing method for d is chosen to emphasize the twisting of the filament.
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model filament shows a behavior expected from low Re flows.

The velocity vector shows a laminar flow and the magnitude

of the velocity field decays as the distance from the filament.

For a fully developed flow, the qualitative feature of the

velocity field is similar to that observed from the PIV

experiment and the slender-body calculation. The far-field

behavior of the velocity field is qualitatively similar to the

Couette flow, where a good fit to the data is found when the

theoretical value is scaled down for comparison. The indi-

vidual particle’s velocity fits well with the theoretical predic-

tions of Couette flow for all regions upon a similar scaling.

The forward propulsion of the filament eventually causes a

disturbance on the steady flow. The pressure field of a fully

developed flow is shown to maintain the flow by providing a

pressure gradient that is relatively high near the filament. The

pressure gradient acts as a centrifugal force. The development

of the pressure field before the flow is fully developed has also

been investigated. The pressure disturbance propagates

outward in a manner similar to a wave.

The deformation of the model filament was studied in the

presence and absence of the surrounding fluid. In the absence

of the surrounding fluid, the filament undergoes a dynamic

instability where the rotation of the helix changes from a

twirling state to a whirling state. The deflection of the fila-

ment increases with the increase of rotational speed. It is

found that the hydrodynamic effect via the SPH solvent sup-

presses the deflection resulting from small motor rotations.

For high motor rotations, the deformation depends on the vis-

cosity of the fluid. For relatively low viscosity, the filament

shows similar dynamic instability as that found for an iso-

lated filament. Upon increasing the viscosity, part of the fila-

ment twists around itself so as to change the shape of the

helix. The complex process of polymorphism that involves

shape transformations and chirality reversal may be initiated

due to mechanical loadings, as qualitatively observed in the

present system. To capture the full polymorphic transforma-

tion, some modifications are needed to the model presented

here. In particular, a model of a flagellum that incorporates

some level of atomistic detail may be required. Another

aspect of our model that requires future improvement corre-

sponds to the artificial viscosity of the SPH model. This

factor limits the capability of the model to do quantitative

comparisons with other theoretical or experimental predic-

tions. Future improvements might be to employ another

variant of the SPH method known as smooth-particle applied

mechanics (SPAM) (54,55). The latter method is the same as

the SPH method except for the artificial viscosity.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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GM053148.

REFERENCES

1. Berg, H. C. 2004. E. Coli in Motion. Spring-Verlag, New York.

2. Berg, H. C. 2000. Motile behavior of bacteria. Phys. Today. 53:24–29.

3. Namba, K., and F. Vonderviszt. 1997. Molecular architecture of bac-

terial flagellum. Q. Rev. Biophys. 30:1–65.

4. Berg, H. C., and R. A. Anderson. 1973. Bacteria swim by rotating their
flagellar filament. Nature. 245:380–382.

5. Silverman, M., and M. Simon. 1974. Flagellar rotation and the mech-
anism of bacterial motility. Nature. 249:73–74.

6. Asakura, S. 1970. Polymerization of flagellin and polymorphism of

flagella. Adv. Biophys. 1:99–155.

7. Calladine, C. R. 1983. Construction and operation of bacterial flagella.

Sci. Prog. 68:365–385.

8. Calladine, C. R. 1975. Construction of bacterial flagella. Nature.
255:121–124.

9. Samatey, F. A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka,
M. Yamamoto, and K. Namba. 2001. Structure of the bacterial flagellar

protofilament and implications for a switch for supercoiling. Nature.
410:331–337.

10. Hasegawa, K. I., I. Yamashita, and K. Namba. 1998. Quasi- and
nonequivalence in the structure of bacterial flagellar filament. Biophys.
J. 74:569–575.

11. Berg, H. C., and D. A. Brown. 1972. Chemotaxis in Escherichia coli
analysed by three-dimensional tracking. Nature. 239:500–504.

12. Macnab, R. M., and D. E. Koshland. 1972. The gradient-sensing
mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 69:

2509–2512.

13. Larsen, S. H., R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler.

1974. Change in direction of flagellar rotation is the basis of the chemo-
tactic response in Escherichia coli. Nature. 249:74–77.

14. Macnab, R. M., and M. K. Ornston. 1977. Normal-to-curly flagellar
transition and their role in bacterial tumbling. Stabilization of an

alternative quaternary structure by mechanical force. J. Mol. Biol.
112:1–30.

15. Holwill, M. E., and R. E. Burge. 1963. A hydrodynamic study of the
motility of flagellated bacteria. Arch. Biochem. Biophys. 101:249–260.

16. Schreiner, K. E. 1971. The helix as propeller of microorganisms.

J. Biomech. 4:73–83.

17. Chwang, A. T., and T. Y. Wu. 1976. Hydromechanics of low-
Reynolds-number flow. Part 4. Translation of spheroids. J. Fluid Mech.
75:677–689.

18. Lighthill, M. J. 1996. Helical distributions of Stokeslets. J. Eng. Math.
30:35–78.

19. Hancock, G. J. 1953. Self-propulsion of microscopic organisms

through liquids. Proc. Roy. Soc. A. 217:96–121.

20. Higdon, J. J. L. 1979. The hydrodynamics of flagellar propulsion:
helical waves. J. Fluid Mech. 94:331–351.

21. Ramia, M., D. L. Tullock, and N. Phan-Thein. 1993. The role of hydro-
dynamic interaction in the locomotion of microorganisms. Biophys. J.
65:755–778.

22. Kim, M., and T. R. Powers. 2004. Hydrodynamic interactions between
rotating helices. Phys. Rev. E. 69:061910–061915.

23. Machin, K. E. 1958. Wave propagation along flagella. J. Exp. Biol.
35:796–806.

24. Powers, T. R. 2002. Role of body rotation in bacterial flagellar

bundling. Phys. Rev. E. 65:040903–040907.

25. Koehler, S. A., and T. R. Powers. 2000. Twirling elastica: kinks,

viscous drag, and torsional stress. Phys. Rev. Lett. 85:4827–4830.

26. Goldstein, R. E., A. Goriely, G. Huber, and C. W. Wolgemuth. 2000.
Bistable helices. Phys. Rev. Lett. 84:1631–1634.

27. Gray, J., and G. J. Hancock. 1955. The propulsion of sea-urchin
spermatozoa. J. Exp. Biol. 32:802–814.

Bacterial Flagellum Modeling 3651

Biophysical Journal 91(10) 3640–3652



28. Kim, M., and T. R. Powers. 2005. Deformation of a helical filament by
flow and electric or magnetic fields. Phys. Rev. E. 71:021914–021924.

29. Srigiriraju, S. V., and T. R. Powers. 2005. Continuum model for
polymorphism of bacterial flagella. Phys. Rev. Lett. 94:248101–248105.

30. Flores, H., E. Lobaton, S. Mendez-Diez, S. Tlupova, and R. Cortez.
2005. A study of bacterial flagellar bundling. Bull. Math. Biol. 67:
137–168.

31. Tirion, M. M. 1996. Large amplitude elastic motions in protein from a
single-parameter, atomic analysis. Phys. Rev. Lett. 77:1905–1908.

32. Lim, S., and C. S. Peskin. 2004. Simulations of the whirling instability
by the immersed boundary method. SIAM J. Sci. Comput. 25:2066–
2083.

33. Lucy, L. B. 1977. A numerical approach to the testing of the fission
hypothesis. Astron. J. 82:1013–1024.

34. Gingold, R. A., and J. J. Monaghan. 1977. Smoothed particle
hydrodynamics theory and applications to non-spherical stars. Mon.
Not. R. Astron. Soc. 181:375–389.

35. Monaghan, J. J. 1994. Simulating free surface flows with SPH.
J. Comput. Phys. 110:399–406.

36. Kim, M. J., M. M. J. Kim, J. C. Bird, J. Park, T. R. Powers, and K. S.
Breuer. 2004. Particle image velocimetry experiments on a macro-scale
model for bacterial flagellar bundling. Exp. Fluids. 37:782–788.

37. Brimer, C., and T. C. Montie. 1998. Cloning and comparison of fliC
genes and identification of glycosylation in the flagellin of Pseudomo-
nas aeruginosa a-type strains. J. Bacteriol. 180:3209–3217.

38. Turner, L., W. S. Ryu, and H. C. Berg. 2000. Real-time imaging of
fluorescent flagellar filaments. J. Bacteriol. 182:2793–2801.

39. Kim, M., J. C. Bird, A. J. Van Parys, K. S. Breuer, and T. R. Powers.
2003. A macroscopic scale model of bacterial flagellar bundling. Proc.
Natl. Acad. Sci. USA. 100:15481–15485.

40. Monaghan, J. J. 1992. Smooth particle hydrodynamics. Ann. Rev.
Astron. Astrophys. 30:543–547.

41. Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge
University Press, Cambridge, UK.

42. Trachtenberg, S., D. Fishelov, and M. Ben-Artzi. 2003. Bacterial
flagellar microhydrodynamics: laminar flow over complex flagellar
filaments, analog archimedean screws and cylinders, and its perturba-
tions. Biophys. J. 85:1345–1357.

43. Ellero, M., M. Kroger, and S. Hess. 2002. Viscoelastic flows studied by
smoothed particle dynamics. J. Non-Newtonian Fluid Mech. 105:35–51.

44. Purcell, E. M. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11.

45. Brokaw, C. J. 1971. Bend propagation by a sliding filament model for
flagella. J. Exp. Biol. 55:289–304.

46. Brokaw, C. J. 2005. Computer simulation of flagellar movement IX.
Oscillation and symmetry breaking in a model for short flagella and
nodal cilia. Cell Motil. Cytoskeleton. 60:35–47.

47. Berg, H. C. 2003. The rotary motor of bacterial flagella. Annu. Rev.
Biochem. 72:19–54.

48. McCarter, L. L. 2001. Polar flagellar motility of the vibrionaceae.
Microbiol. Mol. Biol. Rev. 65:445–462.

49. Higdon, J. J. L. 1979. A hydrodynamic analysis of a flagellar
propulsion. J. Fluid Mech. 90:685–711.

50. Happel, J., and H. Brenner. 1965. Low Reynolds Number Hydrody-
namics. Prentice-Hall, Englewood Cliffs, NJ.

51. Landau, L. D., and E. M. Lifshitz. 1987. Fluid mechanics. Pergamon
Press, Oxford, UK.

52. Wolgemuth, C. W., T. R. Powers, and R. E. Goldstein. 2000. Twirling
and whirling: viscous dynamics of rotating elastic filaments. Phys. Rev.
Lett. 84:1623–1626.

53. Love, A. E. H. 1944. A Treatise on the Mathematical Theory of
Elasticity. Dover Publications, New York, NY.

54. Ayton, G. S., J. L. McWhirter, P. McMurtry, and G. A. Voth. 2005.
Coupling field theory with continuum mechanics: a simulation of
domain formation in giant unilamellar vesicles. Biophys. J. 88:3855–
3869.

55. Posch, H. A., W. G. Hoover, and O. Kum. 1995. Steady-state shear
flows via nonequilibrium molecular dynamics and smooth-particle
applied mechanics. Phys. Rev. E. 52:1711–1720.

3652 Gebremichael et al.

Biophysical Journal 91(10) 3640–3652


